Generate Ssh Key Sub Linux System
- Generate Ssh Key Sub Linux System Download
- Generate Ssh Key Sub Linux System Requirements
- How To Generate Ssh Key Pair
- Generate Ssh Key Sub Linux Systems
- Generate Ssh Key Sub Linux System Free
- Generate Ssh Key Sub Linux System Command
Installation of SSH Keys on Linux - A Step-By-Step Guide. Outlined below is a step-by-step guide detailing the process of installing SSH Keys on a Linux server: Step One: Creation of the RSA Key Pair. The first step in the installation process is to create the key pair on the client machine, which would, more often than not, be your own system. Ssh-keygen -f anything creates two files in the current directory. Anything.pub is the public key, which you could append to the user's /.ssh/authorizedkeys on any destination server. The other file, just called anything is the private key and therefore should be stored safely for the user. Quick steps: Create and use an SSH public-private key pair for Linux VMs in Azure.; 4 minutes to read +4; In this article. With a secure shell (SSH) key pair, you can create virtual machines (VMs) in Azure that use SSH keys for authentication, eliminating the need for passwords to sign in.
Connect to a server by using SSH on Linux or Mac OS X
This article provides steps for connecting to a cloud server froma computer running Linux® or MacOS® X by using Secure Shell (SSH).It also discusses generating an SSH key and adding a public key tothe server.
Introduction
SSH is a protocol through which you can access your cloud server and runshell commands. You can use SSH keys to identify trusted computers withoutthe need for passwords and to interact with your servers.
SSH is encrypted with Secure Sockets Layer (SSL), which makes it difficultfor these communications to be intercepted and read.
Note: Many of the commands in this article must be run on your localcomputer. The default commands listed are for the Linux command line orMacOS X Terminal. To make SSH connections from Windows®, you can use a clientsimilar to the free program, PuTTY.To generate keys, you can use a related program, PuTTYGen.
Log in
Using the Internet Protocol (IP) address and password for your cloud server, log in byrunning the following ssh
command with username@ipaddress
as the argument:
The system prompts you to enter the password for the account to which you’reconnecting.
Remote host identification
If you rebuilt your cloud server, you might get the following message:
One of the security features of SSH is that when you log in to a cloudserver, the remote host has its own key that identifies it. When you tryto connect, your SSH client checks the server’s key against any keysthat it has saved from previous connections to that IP address. After yourebuild a cloud server, that remote host key changes, so your computerwarns you of possibly suspicious activity.
To ensure the security of your server, you canuse the web console in the Cloud Control Panel to verify your server’s new key.If you’re confident that you aren’t being spoofed, you can skip thatstep and delete the record of the old SSH host key as follows:
On your local computer, edit the SSH known_hosts
file and remove anylines that start with your cloud server’s IP address.
Note: Use the editor of your choice, such as nano
on Debian or theUbuntu operating systemor vi
on RPM or CENTOS servers. For simplicity, this article just uses nano
. If you prefer to use vi
,substitute vi
for nano
in the edit commands.For more on using nano
City car driving 1.5 activation key generator number. , seehttps://support.rackspace.com/how-to/modify-your-hosts-file/.
If you are not using Linux or MacOS X on your local computer, thelocation of the known_hosts file might differ. Refer to your OS forinformation about the file location. PuTTY on Windows gives you theoption to replace the saved host key.
Generate a new SSH key pair
You can secure SSH access to your cloud server against brute forcepassword attacks by using a public-private key pair. A public key is placed onthe server and a matching private key is placed on your local computer. If youconfigure SSH on your server to accept only connections using keys,then no one can log in by using just a password. Connecting clientsare required to use a private key that has a public key registered onthe server. For more on security, reviewLinux server security best practices.
Use the following steps to generate an SSH key pair:
Run the following command using your email address as a label.Substitute your email address for
your_email@example.com
inthe command.A message indicates that your public-private RSA key pair isbeing generated.
At the prompt, press Enter to use the default location or entera file in which to save the key and press Enter.
If you want the additional security of a password for the key pair,enter a passphraseand press Enter. If you don’t want to use a passwordwith the key pair, press Enter to continue without setting one.
Your key pair is generated, and the output looks similar to the following example:
Optionally, add your new key to the local ssh-agent file to enableSSH to find your key without the need to specify its location everytime that you connect:
You can use an SSH configuration shortcut instead of the ssh-agent fileby following the instructions in the Shortcut configuration sectionlater in this article.
Add the public key to your cloud account
To make it easy to add your key to new cloud servers that you create,upload the public key to your cloud account by following these steps:
- Log in to the Cloud Control Panel.
- In the top navigation bar, click Select a Product > Rackspace Cloud.
- Select Servers > SSH Keys.
- Click Add Public Key.
- Enter a key name, such as Work Laptop, to remind you which computer this key is for.
- Select the region for which you want to store the public key. Tostore your key in multiple regions, repeat these steps foreach region. The key must reside in the same region as the server.
Paste the contents of the id_rsa.pub file that you created intothe Public Key field. You can get the file contents by eitheropening the file in a text editor or by running the followingcommand:
- Click Add Public Key.
If you want to add the key manually, instead of by using the Control Panel, reviewLinux server security best practicesand use the following command:
Create a new server by using a stored key
When you create a new cloud server, you can add a stored key to the newserver.
On the Create Server page, expand the Advanced Options section.
From the SSH Key menu, select your key from the list.
If you don’t see a stored key in the list, you can perform one of the following actions:
- Switch the region for the new server to the region where you have stored the SSH key.
- Repeat the steps in the preceding section, Add the public key to your cloud account,to add the key to the region in which you want to create the new server.
Add the key to an existing server
You can’t use the Cloud Control Panel to add a public key to anexisting server. Follow these steps to add the key manually:
On your cloud server, create a directory named .ssh in the homefolder of the user that you connect to by using SSH.
Create or edit the authorized_keys file and add your public key tothe list of authorized keys by using the following command:
A key is all on one line, so ensure that the key isn’t broken byline breaks. You can have multiple keys in the authorized_keysfile, with one key per line.
Set the correct permissions on the key by using the following commands:
If you have any issues and need to fix permissions issues, run the following comand:
After you have added the public key to the authorized_keys, you can make an SSHconnection by using your key pair instead of the account password.
Shortcut configuration
Use the following instructions to set up a connection shortcut by creating a~/.ssh/config file on your local computer and adding your server and keydetails to it.
Using a text editor, add the following text to the ~/.ssh/config file, changing thevalues to match your server information:
Each of the following entries describes a feature of the server:
- Host: A shortcut name that you use to tell SSH to use thisconnection.
- HostName: The address of the server to which you connect.
- User: The name of the user account to connect to on theserver.
- IdentityFile: The location of the private key file (id_rsa).
After you set up the config file, connect to the server by usingthe following command with your shortcut name:
Troubleshooting
If you have trouble making a new connection after you restart theserver, use the following steps to help you resolve the issue:
The best way to troubleshoot SSH or SFTP login issues is to attempt tologin through SSH while logged into the Emergency Console and to watch the log,which typically includes the reason for a failure. If no reason is given,it could be a firewall issue. For RPM servers, run the following command to watch the log:
For Debian servers, run the following command to watch the log:
- If you get a
connection timeout
error, check the IP address thatyou used to ensure that it’s correct. You might also check theserver’s iptables to ensure that it isn’t blocking the port used by SSH. - If you get a
connection refused
error, you might be trying to useSSH with the wrong port. If you changed your server to listen to aport other than 22, use the-p
option with SSH to specifythe port. - If your login is rejected, then you might have an issuewith your key. Change the
sshd
configuration to allow passwordconnections by settingPasswordAuthentication
toyes
. Restartthe server and try again. If you connect after these changes, thenthe issue is with the key and you must verify that the key is in theright place on the server. If all else fails, review your changes and restart the SSH daemon onthe server by running the following command:
If you get a message that the SSH service is unknown, run thecommand with
sshd
as the service name instead.
Experience what Rackspace has to offer.
©2020 Rackspace US, Inc.
Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License
This article or section needs expansion.
Generate Ssh Key Sub Linux System Download
SSH keys can serve as a means of identifying yourself to an SSH server using public-key cryptography and challenge-response authentication. The major advantage of key-based authentication is that in contrast to password authentication it is not prone to brute-force attacks and you do not expose valid credentials, if the server has been compromised.[1]
Furthermore SSH key authentication can be more convenient than the more traditional password authentication. When used with a program known as an SSH agent, SSH keys can allow you to connect to a server, or multiple servers, without having to remember or enter your password for each system.
Key-based authentication is not without its drawbacks and may not be appropriate for all environments, but in many circumstances it can offer some strong advantages. A general understanding of how SSH keys work will help you decide how and when to use them to meet your needs.
This article assumes you already have a basic understanding of the Secure Shell protocol and have installed the openssh package.
- 2Generating an SSH key pair
- 2.1Choosing the authentication key type
- 2.2Choosing the key location and passphrase
- 3Copying the public key to the remote server
- 4SSH agents
- 4.1ssh-agent
- 4.3Keychain
- 4.4x11-ssh-askpass
- 4.5pam_ssh
- 5Troubleshooting
Background
SSH keys are always generated in pairs with one known as the private key and the other as the public key. The private key is known only to you and it should be safely guarded. By contrast, the public key can be shared freely with any SSH server to which you wish to connect.
If an SSH server has your public key on file and sees you requesting a connection, it uses your public key to construct and send you a challenge. This challenge is an encrypted message and it must be met with the appropriate response before the server will grant you access. What makes this coded message particularly secure is that it can only be understood by the private key holder. While the public key can be used to encrypt the message, it cannot be used to decrypt that very same message. Only you, the holder of the private key, will be able to correctly understand the challenge and produce the proper response.
This challenge-response phase happens behind the scenes and is invisible to the user. As long as you hold the private key, which is typically stored in the ~/.ssh/
directory, your SSH client should be able to reply with the appropriate response to the server.
A private key is a guarded secret and as such it is advisable to store it on disk in an encrypted form. When the encrypted private key is required, a passphrase must first be entered in order to decrypt it. While this might superficially appear as though you are providing a login password to the SSH server, the passphrase is only used to decrypt the private key on the local system. The passphrase is not transmitted over the network.
Generating an SSH key pair
An SSH key pair can be generated by running the ssh-keygen
command, defaulting to 3072-bit RSA (and SHA256) which the ssh-keygen(1) man page says is 'generally considered sufficient' and should be compatible with virtually all clients and servers:
The randomart image was introduced in OpenSSH 5.1 as an easier means of visually identifying the key fingerprint.
-a
switch to specify the number of KDF rounds on the password encryption.You can also add an optional comment field to the public key with the -C
switch, to more easily identify it in places such as ~/.ssh/known_hosts
, ~/.ssh/authorized_keys
and ssh-add -L
output. For example:
will add a comment saying which user created the key on which machine and when.
Choosing the authentication key type
OpenSSH supports several signing algorithms (for authentication keys) which can be divided in two groups depending on the mathematical properties they exploit:
- DSA and RSA, which rely on the practical difficulty of factoring the product of two large prime numbers,
- ECDSA and Ed25519, which rely on the elliptic curve discrete logarithm problem. (example)
Elliptic curve cryptography (ECC) algorithms are a more recent addition to public key cryptosystems. One of their main advantages is their ability to provide the same level of security with smaller keys, which makes for less computationally intensive operations (i.e. faster key creation, encryption and decryption) and reduced storage and transmission requirements.
OpenSSH 7.0 deprecated and disabled support for DSA keys due to discovered vulnerabilities, therefore the choice of cryptosystem lies within RSA or one of the two types of ECC.
#RSA keys will give you the greatest portability, while #Ed25519 will give you the best security but requires recent versions of client & server[2][dead link 2020-04-02 ⓘ]. #ECDSA is likely more compatible than Ed25519 (though still less than RSA), but suspicions exist about its security (see below).
RSA
ssh-keygen
defaults to RSA therefore there is no need to specify it with the -t
option. It provides the best compatibility of all algorithms but requires the key size to be larger to provide sufficient security.
Minimum key size is 1024 bits, default is 3072 (see ssh-keygen(1)) and maximum is 16384.
If you wish to generate a stronger RSA key pair (e.g. to guard against cutting-edge or unknown attacks and more sophisticated attackers), simply specify the -b
option with a higher bit value than the default:
Be aware though that there are diminishing returns in using longer keys.[3][4] The GnuPG FAQ reads: 'If you need more security than RSA-2048 offers, the way to go would be to switch to elliptical curve cryptography — not to continue using RSA'.[5]
On the other hand, the latest iteration of the NSA Fact Sheet Suite B Cryptography[dead link 2020-04-02 ⓘ] suggests a minimum 3072-bit modulus for RSA while '[preparing] for the upcoming quantum resistant algorithm transition'.[6]
ECDSA
The Elliptic Curve Digital Signature Algorithm (ECDSA) was introduced as the preferred algorithm for authentication in OpenSSH 5.7. Some vendors also disable the required implementations due to potential patent issues.
There are two sorts of concerns with it:
- Political concerns, the trustworthiness of NIST-produced curves being questioned after revelations that the NSA willingly inserts backdoors into softwares, hardware components and published standards were made; well-known cryptographers haveexpresseddoubts about how the NIST curves were designed, and voluntary tainting has already beenproved in the past.
- Technical concerns, about the difficulty to properly implement the standard and the slowness and design flaws which reduce security in insufficiently precautious implementations.
Both of those concerns are best summarized in libssh curve25519 introduction. Although the political concerns are still subject to debate, there is a clear consensus that #Ed25519 is technically superior and should therefore be preferred.
Ed25519
Ed25519 was introduced in OpenSSH 6.5 of January 2014: 'Ed25519 is an elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance'. Its main strengths are its speed, its constant-time run time (and resistance against side-channel attacks), and its lack of nebulous hard-coded constants.[7] See also this blog post by a Mozilla developer on how it works.
It is already implemented in many applications and libraries and is the default key exchange algorithm (which is different from key signature) in OpenSSH.
Ed25519 key pairs can be generated with:
There is no need to set the key size, as all Ed25519 keys are 256 bits.
Keep in mind that older SSH clients and servers may not support these keys.
Choosing the key location and passphrase
Upon issuing the ssh-keygen
command, you will be prompted for the desired name and location of your private key. By default, keys are stored in the ~/.ssh/
directory and named according to the type of encryption used. You are advised to accept the default name and location in order for later code examples in this article to work properly.
When prompted for a passphrase, choose something that will be hard to guess if you have the security of your private key in mind. A longer, more random password will generally be stronger and harder to crack should it fall into the wrong hands.
It is also possible to create your private key without a passphrase. While this can be convenient, you need to be aware of the associated risks. Without a passphrase, your private key will be stored on disk in an unencrypted form. Anyone who gains access to your private key file will then be able to assume your identity on any SSH server to which you connect using key-based authentication. Furthermore, without a passphrase, you must also trust the root user, as he can bypass file permissions and will be able to access your unencrypted private key file at any time.
Changing the private key's passphrase without changing the key
If the originally chosen SSH key passphrase is undesirable or must be changed, one can use the ssh-keygen
command to change the passphrase without changing the actual key. This can also be used to change the password encoding format to the new standard.
Managing multiple keys
It is possible — although controversial [8][9] — to use the same SSH key pair for multiple hosts.
On the other hand, it is rather easy to maintain distinct keys for multiple hosts by using the IdentityFile
directive in your openSSH config file:
See ssh_config(5) for full description of these options.
Storing SSH keys on hardware tokens
SSH keys can also be stored on a security token like a smart card or a USB token. This has the advantage that the private key is stored securely on the token instead of being stored on disk. When using a security token the sensitive private key is also never present in the RAM of the PC; the cryptographic operations are performed on the token itself. A cryptographic token has the additional advantage that it is not bound to a single computer; it can easily be removed from the computer and carried around to be used on other computers.
Examples are hardware tokens are described in:
- YubiKey#Using a YubiKey with SSH, and
Copying the public key to the remote server
This article or section needs expansion.
Once you have generated a key pair, you will need to copy the public key to the remote server so that it will use SSH key authentication. The public key file shares the same name as the private key except that it is appended with a .pub
extension. Note that the private key is not shared and remains on the local machine.
Simple method
sh
shell such as tcsh
as default and uses OpenSSH older than 6.6.1p1. See this bug report.If your key file is ~/.ssh/id_rsa.pub
you can simply enter the following command.
If your username differs on remote machine, be sure to prepend the username followed by @
to the server name.
If your public key filename is anything other than the default of ~/.ssh/id_rsa.pub
you will get an error stating /usr/bin/ssh-copy-id: ERROR: No identities found
. In this case, you must explicitly provide the location of the public key.
If the ssh server is listening on a port other than default of 22, be sure to include it within the host argument.
Manual method
By default, for OpenSSH, the public key needs to be concatenated with ~/.ssh/authorized_keys
. Begin by copying the public key to the remote server.
The above example copies the public key (id_ecdsa.pub
) to your home directory on the remote server via scp
. Do not forget to include the :
at the end of the server address. Also note that the name of your public key may differ from the example given.
On the remote server, you will need to create the ~/.ssh
directory if it does not yet exist and append your public key to the authorized_keys
file.
The last two commands remove the public key file from the server and set the permissions on the authorized_keys
file such that it is only readable and writable by you, the owner.
SSH agents
If your private key is encrypted with a passphrase, this passphrase must be entered every time you attempt to connect to an SSH server using public-key authentication. Each individual invocation of ssh
or scp
will need the passphrase in order to decrypt your private key before authentication can proceed.
An SSH agent is a program which caches your decrypted private keys and provides them to SSH client programs on your behalf. In this arrangement, you must only provide your passphrase once, when adding your private key to the agent's cache. This facility can be of great convenience when making frequent SSH connections.
An agent is typically configured to run automatically upon login and persist for the duration of your login session. A variety of agents, front-ends, and configurations exist to achieve this effect. This section provides an overview of a number of different solutions which can be adapted to meet your specific needs.
ssh-agent
ssh-agent
is the default agent included with OpenSSH. It can be used directly or serve as the back-end to a few of the front-end solutions mentioned later in this section. When ssh-agent
is run, it forks to background and prints necessary environment variables. E.g.
To make use of these variables, run the command through the eval
command.
Once ssh-agent
is running, you will need to add your private key to its cache:
If your private key is encrypted, ssh-add
will prompt you to enter your passphrase. Once your private key has been successfully added to the agent you will be able to make SSH connections without having to enter your passphrase.
ssh
clients, including git
store keys in the agent on first use, add the configuration setting AddKeysToAgent yes
to ~/.ssh/config
. Other possible values are confirm
, ask
and no
(default).In order to start the agent automatically and make sure that only one ssh-agent
process runs at a time, add the following to your ~/.bashrc
:
This will run a ssh-agent
process if there is not one already, and save the output thereof. If there is one running already, we retrieve the cached ssh-agent
output and evaluate it which will set the necessary environment variables.
There also exist a number of front-ends to ssh-agent
and alternative agents described later in this section which avoid this problem.
Start ssh-agent with systemd user
It is possible to use the systemd/User facilities to start the agent. Use this if you would like your ssh agent to run when you are logged in, regardless of whether x is running.
Add SSH_AUTH_SOCK DEFAULT='${XDG_RUNTIME_DIR}/ssh-agent.socket'
to ~/.pam_environment
. Then enable or start the service with the --user
flag.
ssh-agent as a wrapper program
An alternative way to start ssh-agent (with, say, each X session) is described in this ssh-agent tutorial by UC Berkeley Labs. A basic use case is if you normally begin X with the startx
command, you can instead prefix it with ssh-agent
like so:
And so you do not even need to think about it you can put an alias in your .bash_aliases
file or equivalent:
Generate Ssh Key Sub Linux System Requirements
Doing it this way avoids the problem of having extraneous ssh-agent
instances floating around between login sessions. Exactly one instance will live and die with the entire X session.
ssh-agent startx
, you can add eval $(ssh-agent)
to ~/.xinitrc
.See the below notes on using x11-ssh-askpass with ssh-add for an idea on how to immediately add your key to the agent.
GnuPG Agent
The gpg-agent has OpenSSH agent emulation. See GnuPG#SSH agent for necessary configuration.
Keychain
Keychain is a program designed to help you easily manage your SSH keys with minimal user interaction. It is implemented as a shell script which drives both ssh-agent and ssh-add. A notable feature of Keychain is that it can maintain a single ssh-agent process across multiple login sessions. This means that you only need to enter your passphrase once each time your local machine is booted.
Installation
Install the keychain package.
Configuration
-Q, --quick
option has the unexpected side-effect of making keychain switch to a newly-spawned ssh-agent upon relogin (at least on systems using GNOME), forcing you to re-add all the previously registered keys.Add a line similar to the following to your shell configuration file, e.g. if using Bash:
~/.bashrc
is used instead of the upstream suggested ~/.bash_profile
because on Arch it is sourced by both login and non-login shells, making it suitable for textual and graphical environments alike. See Bash#Invocation for more information on the difference between those.In the above example,
- the
--eval
switch outputs lines to be evaluated by the openingeval
command; this sets the necessary environments variables for SSH client to be able to find your agent. --quiet
will limit output to warnings, errors, and user prompts.
Multiple keys can be specified on the command line, as shown in the example. By default keychain will look for key pairs in the ~/.ssh/
directory, but absolute path can be used for keys in non-standard location. You may also use the --confhost
option to inform keychain to look in ~/.ssh/config
for IdentityFile
settings defined for particular hosts, and use these paths to locate keys.
See keychain --help
or keychain(1) for details on setting keychain for other shells.
To test Keychain, simply open a new terminal emulator or log out and back in your session. It should prompt you for the passphrase of the specified private key(s) (if applicable), either using the program set in $SSH_ASKPASS
or on the terminal.
Because Keychain reuses the same ssh-agent process on successive logins, you should not have to enter your passphrase the next time you log in or open a new terminal. You will only be prompted for your passphrase once each time the machine is rebooted.
Tips
- keychain expects public key files to exist in the same directory as their private counterparts, with a
.pub
extension. If the private key is a symlink, the public key can be found alongside the symlink or in the same directory as the symlink target (this capability requires thereadlink
command to be available on the system).
- to disable the graphical prompt and always enter your passphrase on the terminal, use the
--nogui
option. This allows to copy-paste long passphrases from a password manager for example.
- if you do not want to be immediately prompted for unlocking the keys but rather wait until they are needed, use the
--noask
option.
--agents
option, e.g.--agents ssh,gpg
. See keychain(1).x11-ssh-askpass
The x11-ssh-askpass package provides a graphical dialog for entering your passhrase when running an X session. x11-ssh-askpass depends only on the libx11 and libxt libraries, and the appearance of x11-ssh-askpass is customizable. While it can be invoked by the ssh-add program, which will then load your decrypted keys into ssh-agent, the following instructions will, instead, configure x11-ssh-askpass to be invoked by the aforementioned Keychain script.
Install the keychain and x11-ssh-askpass packages.
Edit your ~/.xinitrc
file to include the following lines, replacing the name and location of your private key if necessary. Be sure to place these commands before the line which invokes your window manager.
In the above example, the first line invokes keychain and passes the name and location of your private key. If this is not the first time keychain was invoked, the following two lines load the contents of $HOSTNAME-sh
and $HOSTNAME-sh-gpg
, if they exist. These files store the environment variables of the previous instance of keychain.
Calling x11-ssh-askpass with ssh-add
The ssh-add manual page specifies that, in addition to needing the DISPLAY
variable defined, you also need SSH_ASKPASS
set to the name of your askpass program (in this case x11-ssh-askpass). It bears keeping in mind that the default Arch Linux installation places the x11-ssh-askpass binary in /usr/lib/ssh/
, which will not be in most people's PATH
. This is a little annoying, not only when declaring the SSH_ASKPASS
variable, but also when theming. You have to specify the full path everywhere. Both inconveniences can be solved simultaneously by symlinking:
This is assuming that ~/bin
is in your PATH
. So now in your .xinitrc
, before calling your window manager, one just needs to export the SSH_ASKPASS
environment variable:
and your X resources will contain something like:
Doing it this way works well with the above method on using ssh-agent as a wrapper program. You start X with ssh-agent startx
and then add ssh-add to your window manager's list of start-up programs.
Theming
The appearance of the x11-ssh-askpass dialog can be customized by setting its associated X resources. Some examples are the .ad files at https://github.com/sigmavirus24/x11-ssh-askpass. See x11-ssh-askpass(1)[dead link 2019-05-05] for full details.
Jul 21, 2017 Hi viewers!!! In this tutorial I'll show you Steps by Steps How to convert ssl certificate crt and key file into pfx file format. When prompted, type the password for the root key, and the organizational information for the custom CA: Country, State, Org, OU, and the fully qualified domain name. This is the domain of the website and it should be different from the issuer. Generate the certificate with the CSR and the key and sign it with the CA's root key. Generate base64 certificate and key.
Alternative passphrase dialogs
There are other passphrase dialog programs which can be used instead of x11-ssh-askpass. The following list provides some alternative solutions.
- ksshaskpass uses the KDE Wallet.
- openssh-askpass uses the Qt library.
pam_ssh
The pam_ssh project exists to provide a Pluggable Authentication Module (PAM) for SSH private keys. This module can provide single sign-on behavior for your SSH connections. On login, your SSH private key passphrase can be entered in place of, or in addition to, your traditional system password. Once you have been authenticated, the pam_ssh module spawns ssh-agent to store your decrypted private key for the duration of the session.
To enable single sign-on behavior at the tty login prompt, install the unofficial pam_sshAUR package.
~/.ssh/login-keys.d/
.Create a symlink to your private key file and place it in ~/.ssh/login-keys.d/
. Replace the id_rsa
in the example below with the name of your own private key file.
Edit the /etc/pam.d/login
configuration file to include the text highlighted in bold in the example below. The order in which these lines appear is significiant and can affect login behavior.
In the above example, login authentication initially proceeds as it normally would, with the user being prompted to enter his user password. The additional auth
authentication rule added to the end of the authentication stack then instructs the pam_ssh module to try to decrypt any private keys found in the ~/.ssh/login-keys.d
directory. The try_first_pass
option is passed to the pam_ssh module, instructing it to first try to decrypt any SSH private keys using the previously entered user password. If the user's private key passphrase and user password are the same, this should succeed and the user will not be prompted to enter the same password twice. In the case where the user's private key passphrase user password differ, the pam_ssh module will prompt the user to enter the SSH passphrase after the user password has been entered. The optional
control value ensures that users without an SSH private key are still able to log in. In this way, the use of pam_ssh will be transparent to users without an SSH private key.
If you use another means of logging in, such as an X11 display manager like SLiM or XDM and you would like it to provide similar functionality, you must edit its associated PAM configuration file in a similar fashion. Packages providing support for PAM typically place a default configuration file in the /etc/pam.d/
directory.
Further details on how to use pam_ssh and a list of its options can be found in the pam_ssh(8) man page.
Using a different password to unlock the SSH key
If you want to unlock the SSH keys or not depending on whether you use your key's passphrase or the (different!) login password, you can modify /etc/pam.d/system-auth
to
For an explanation, see [10].
Known issues with pam_ssh
Work on the pam_ssh project is infrequent and the documentation provided is sparse. You should be aware of some of its limitations which are not mentioned in the package itself.
- Versions of pam_ssh prior to version 2.0 do not support SSH keys employing the newer option of ECDSA (elliptic curve) cryptography. If you are using earlier versions of pam_ssh you must use either RSA or DSA keys.
- The
ssh-agent
process spawned by pam_ssh does not persist between user logins. If you like to keep a GNU Screen session active between logins you may notice when reattaching to your screen session that it can no longer communicate with ssh-agent. This is because the GNU Screen environment and those of its children will still reference the instance of ssh-agent which existed when GNU Screen was invoked but was subsequently killed in a previous logout. The Keychain front-end avoids this problem by keeping the ssh-agent process alive between logins.
pam_exec-ssh
As an alternative to pam_ssh you can use pam_exec-sshAUR. It is a shell script that uses pam_exec. Help for configuration can be found upstream.
GNOME Keyring
If you use the GNOME desktop, the GNOME Keyring tool can be used as an SSH agent. See the GNOME Keyring article for further details.
Store SSH keys with Kwallet
For instructions on how to use kwallet to store your SSH keys, see KDE Wallet#Using the KDE Wallet to store ssh key passphrases.
KeePass2 with KeeAgent plugin
How To Generate Ssh Key Pair
KeeAgent is a plugin for KeePass that allows SSH keys stored in a KeePass database to be used for SSH authentication by other programs.
- Supports both PuTTY and OpenSSH private key formats.
- Works with native SSH agent on Linux/Mac and with PuTTY on Windows.
See KeePass#Plugin Installation in KeePass or install the keepass-plugin-keeagent package.
Generate Ssh Key Sub Linux Systems
This agent can be used directly, by matching KeeAgent socket: KeePass -> Tools -> Options -> KeeAgent -> Agent mode socket file -> %XDG_RUNTIME_DIR%/keeagent.socket
-and environment variable:export SSH_AUTH_SOCK='$XDG_RUNTIME_DIR'/keeagent.socket'
.
KeePassXC
The KeePassXC fork of KeePass supports being used as an SSH agent by default. It is also compatible with KeeAgent's database format.
Troubleshooting
Key ignored by the server
- If it appears that the SSH server is ignoring your keys, ensure that you have the proper permissions set on all relevant files.
- For the local machine:
- For the remote machine:
- If that does not solve the problem you may try temporarily setting
StrictModes
tono
in/etc/ssh/sshd_config
. If authentication withStrictModes off
is successful, it is likely an issue with file permissions persists.
- Make sure keys in
~/.ssh/authorized_keys
are entered correctly and only use one single line. - Make sure the remote machine supports the type of keys you are using: some servers do not support ECDSA keys, try using RSA or DSA keys instead, see #Generating an SSH key pair.
- You may want to use debug mode and monitor the output while connecting:
See also
- OpenSSH key management: Part 1, Part 2, Part 3